Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hapipah M. Ali, Subramaniam Puvaneswary and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.047$
$w R$ factor $=0.111$
Data-to-parameter ratio $=15.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[[diaquahexapyridine- μ-sulfato-dicobalt(II)]- μ-sulfato] tetrahydrate]

In the crystal structure of the title compound, $\left[\mathrm{Co}_{2}\left(\mathrm{SO}_{4}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, the sulfate dianion bridges a $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4} \mathrm{Co}$ unit to a $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Co}$ unit, forming a chain that runs along the a axis of the monoclinic unit cell. The Co atoms of the units lie on special positions, each of $\overline{1}$ site symmetry. Adjacent chains are linked through the uncoordinated water molecules into layers.

Comment

Cobalt(II) sulfate crystallizes from pyridine as the μ_{2}-sulfatobridged pyridine-coordinated triaqua compound, (I). The compound adopts a six-coordinate chain structure and the O atoms of the sulfate groups are cis to each other in an octahedral geometry (Zhang, 2004). The formulation of the title compound, expressed as $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Co}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, has two of the three water molecules in outer-sphere coordination. There are two cobalt(II) atoms, and both lie on special positions of $\overline{1}$ site symmetry. The sulfate dianion bridges a $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4} \mathrm{Co}$ unit to a $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Co}$ unit, forming a chain that runs along the a axis of the monoclinic unit cell (Fig. 1). The manner of bridging leads to a trans alignment of the O atoms of the dianion. Adjacent chains are linked by hydrogen bonds (Table 2) into layers.

(I)

Experimental

4-Methylmercaptobenzaldehyde ($0.33 \mathrm{~g}, 2.17 \mathrm{mmol}$) and N-phenylthiourea $(0.32 \mathrm{~g}, 2.17 \mathrm{mmol})$ were heated with cobalt(II) acetate tetrahydrate $(0.27 \mathrm{~g}, 1.09 \mathrm{mmol})$ in ethanol $(30 \mathrm{ml})$ for several hours. Several drops of triethylamine were also added. The solvent was then removed and the product recrystallized from pyridine to furnish palepink crystals. The sulfur in the compound is probably derived from the decomposition of the thiourea; the mechanism of formation was not investigated further.

Received 24 January 2005 Accepted 31 January 2005 Online 5 February 2005
\qquad

Crystal data

$\left[\mathrm{Co}_{2}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=892.68$
Monoclinic, $P 2_{\mathrm{a}_{1}} / n$
$a=12.486(2) \AA$
$b=9.443$ (1) A
$c=16.839(2) \AA$
$\beta=108.289$ (2) ${ }^{\circ}$
$V=1885.1(4) \AA^{3}$
$Z=2$
$D_{x}=1.573 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 837 reflections
$\theta=1.8-27.5^{\circ}$
$\mu=1.06 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, pink
$0.26 \times 0.19 \times 0.13 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\min }=0.769, T_{\max }=0.874$
10748 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.111$
$S=1.14$
4221 reflections
271 parameters
H atoms treated by a mixture of independent and constrained refinement

4221 independent reflections
3588 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-16 \rightarrow 13$
$k=-11 \rightarrow 12$
$l=-21 \rightarrow 20$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0514 P)^{2}\right.} \\
&+0.7327 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.39 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

$\mathrm{Co} 1-\mathrm{O} 1$	$2.096(2)$	$\mathrm{Co} 2-\mathrm{O} 2$	$2.124(2)$
$\mathrm{C} 1-\mathrm{N} 1$	$2.152(2)$	$\mathrm{Co} 2-\mathrm{O} 1 w$	$2.134(2)$
$\mathrm{C} 01-\mathrm{N} 2$	$2.223(2)$	$\mathrm{Co} 2-\mathrm{N} 3$	$2.148(2)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 1^{\mathrm{i}}$	180	$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{O} 2^{\mathrm{ii}}$	180
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$89.12(8)$	$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{O} 1 w$	$88.51(7)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	$90.88(8)$	$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{O} 1 w^{\mathrm{ii}}$	$91.49(7)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2$	$84.94(8)$	$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{N} 3^{\mathrm{ii}}$	$88.86(8)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{i}}$	$95.06(8)$	$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{N} 3$	$91.14(8)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	180	$\mathrm{O} 1 w-\mathrm{Co} 2-\mathrm{O} 1 w^{\mathrm{ii}}$	180
$\mathrm{~N} 1-\mathrm{Co} 1-\mathrm{N} 2$	$92.06(8)$	$\mathrm{O} 1 w-\mathrm{Co} 2-\mathrm{N} 3^{i \mathrm{ii}}$	$92.23(9)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{i}}$	$87.94(8)$	$\mathrm{O} 1 w-\mathrm{Co} 2-\mathrm{N} 3$	$87.77(9)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{i}}$	180	$\mathrm{~N} 3^{\mathrm{ii}}-\mathrm{Co} 2-\mathrm{N} 3$	180

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 3^{\text {ii }}$	0.85 (1)	1.80 (1)	2.644 (3)	170 (3)
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 2 w$	0.85 (1)	2.05 (1)	2.891 (3)	175 (3)
$\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{O} 4^{\text {iii }}$	0.85 (1)	1.92 (1)	2.759 (3)	168 (4)
$\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O} 3 w$	0.85 (1)	1.97 (2)	2.742 (4)	150 (4)
$\mathrm{O} 3 w-\mathrm{H} 3 w 1 \cdots \mathrm{O} 2{ }^{\text {iii }}$	0.85 (1)	1.98 (1)	2.821 (3)	173 (4)
$\mathrm{O} 3 w-\mathrm{H} 3 w 2 \cdots \mathrm{O} 2 w^{\text {iii }}$	0.85 (1)	1.95 (1)	2.787 (4)	168 (4)

Symmetry codes: (ii) $-x,-y+1,-z+1$; (iii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}$.
The carbon-bound H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and were treated as riding, with $U_{\text {iso }}(\mathrm{H})$ values set at 1.2 times $U_{\text {eq }}(\mathrm{C})$. The water H atoms were located and refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA and $\mathrm{H} \cdots \mathrm{H}=1.39$ (1) \AA.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve

Figure 1
ORTEPII plot (Johnson, 1976) of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $-x, 1-y, 1-z$.]
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Ministry of Science, Technology and the Environment (IPRA 09-02-03-1025) for supporting this study, and Professor Bohari M. Yamin of Universiti Kebangsaan Malaysia for the diffraction measurements.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M.(1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, Y.-X. (2004). Acta Cryst. E60, m30-m31.

